irt模型參數估計的mcmc算法研究_第1頁
已閱讀1頁,還剩62頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、南京師范大學碩士學位論文IRT 模型參數估計的MCMC 算法研究姓名:甘媛源申請學位級別:碩士專業(yè):心理學;應用心理學指導教師:余嘉元2009-05-09南京師范大學碩士畢業(yè)論文 Abstract - ii - Abstract Simulation experiments on parameter estimation of item res

2、ponse theory (IRT) model were carried out with markov chain monte carlo (MCMC) algorithm in this dissertation. Firstly, parameter estimation veracity of 2-parameter logistic (2PL) model and 3-parameter logistic (3PL) mod

3、el were investigated with MCMC algorithm. Then the veracity of parameter estimation with MCMC algorithm was compared with EM algorithm, and the veracity of the parameter estimation with MCMC algorithm in 2PL model was co

4、mpared with 3PL model in the same sample size. Thirdly, the reason why the veracity of parameter estimation of 3PL model was worse was investigated, and the improvement of 3PL model was tried out. Finally, the parameter

5、estimation of 4-parameter logistic (4PL) model with MCMC algorithm was investigated. The details are as follows: (1) The MCMC algorithm was effective to estimate parameters of 2PL model, even the samples was limited. The

6、 veracity of MCMC algorithm would be increased with the increase of the items and examinees, which indicated that the algorithm proposed was valuable. (2) The veracity of parameter estimation with MCMC algorithm was bett

7、er than that with EM algorithm. The MCMC algorithm was also effective to estimate parameters of 3PL model, even if the veracity of parameter estimation of 3PL model was not as high as that of 2PL model. The key reason of

8、 the worse veracity of parameter estimation of 3PL model was the poor identifiability of its item parameters. (3) Simulation experiments on parameter estimation of the improved-3PL model were carried out with MCMC algor

9、ithm. The Improved-3PL model could increase the distinguishability of item parameters, and then the veracity of its item parameters estimation was better than standard 3PL model. (4) The MCMC algorithm could estimate par

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論